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A RULE BASED COMPUTER AIDED
DESIGN SYSTEM

Timothy Premack

INTRODUCTION

A theory of the process of design and how a design is represented is presented. A description of current
CAD systems and their shortcomings is described. A system is then presented which addresses the needs
of design: it models the iterative nature of the design process, the associativity between constitutive parts,
and permits design by an explicit function of parameters. An example design of a spring piston is used to

illustrate the system.

MODELING DESIGN

To model design one must not only represent the physical
design but model the design process itself. A model of the
design is a description of the geometry representing its con-
stitutive parts and their relationship to each other in their
assembled configuration.

The process of design is usually defined as iterative [1].
It consists of specification, initial design, evaluation of the
design, and redesign. In essence, given a requirement, one
produces a design and refines it until it meets specific
requirements.

The relationship of the parts forming an assembly
resembles a hierarchy [2]. The top node of the tree is the
assembly itself, the branches form sub-assemblies, moving
down the tree until the assembly has been subdivided down
into indivisible parts, i.e. one piece of geometry. If the Con-
structive Solid Geometry* (CSG) method is used to describe
the geometry, then the hierarchy can move down even further.
For example one might think of a bolt as being a quantum
part, but it can be modeled as the union of a cylinder and
a hexagonal prism.

A physical object can be described as an interconnecting
relationship between many ideas [3]. In applying this theory
to design, one can see how various parts are linked together.
Where two parts interact, each affect the design of the other.
A simple example is a bolt in a hole. The information shared
between the two parts is the diameter of the hole or the
diameter of the bolt. Therefore an assembly of parts can be
represented as a directed graph.

*Constructive Solid Geometry is a geometric modeling technique
which generates complex geometric objects for the logical combina-
tion (union, negation, intersection) of solid geometric primitives
(sphere, cube, cone, etc.).

CAD SYSTEM AND THEIR LIMITATIONS

Current commercial CAD systems are geometric data base
editors. The geometries are interactively entered into the
system via commands from a keyboard, graphics tablet, or
mouse. There are also commands to manipulate and display
the data base. The programs use the geometric data along
with other information to perform analysis such as in-
terference checking, mass properties, mechanism simulation,
and structural analysis.

CAD systems do not have methods for storing the asso-
ciativity of elements in their data base. Many systems have
methods for grouping parts into one part. This makes the data
base smaller and manipulation of the parts easier for the user.
For dimensioning parts, systems can tie the dimension lines
to the part geometries, so if the geometry is changed, the
annotation changes automatically. The journaling capability
can also be considered to provide associativity between parts.
A joumal file is made from the user’s interactive commands.
If there is a change to be made, the user can edit the journal
file and then execute it. Other systems provide what are called
parameterized parts, a macro capability for defining solid
geometries in the same format as the system uses.

These methods provide the support needed for design, but
they are deficient in two key areas. They do not explicitly
support the iterative design process nor store limited part
associativity. An example of their limitations follows.

A truss structure is defined as four elements joined to
represent a rectangle with a fifth element as a diagonal (an
element being some prismatic bar). If the length of one of
the sides is changed, the element joining the sides does not
change position or length, and the connectivity between
elements in the data base is not stored.

To solve this problem, one could define the truss to be
a parameterized part. This definition has limited usefulness,
however. The truss does not change with a change in defini-
tion, but must be removed and then recreated. Hence the idea
of parameterized parts is useful mainly in data base creation,
not in moditication.



One could also use a journal file to define the truss. The
designer edits the journal file to define the new truss, removes
the current truss from the data base and execute the journal
file—a process similar to the parameterized part. Although
the journal file protects the user from loss of work, its use
as a design generator has some problems. For one, there is
a large overhead in interpreting the file to create a design.
If used as a design generator the file actually becomes the
data base, from which the system creates its internal data
base. Since the journal file is a sequentially ordered list of
commands, the user is responsible for inserting commands
in the correct order. For menu driven systems this procedure
is quite complicated, since the function of a command is
predicated on the previous command.

In designing the next iteration one favors the use of as much
of the data base as possible in developing the next design.
In CAD, as in board design, the process is a manual one.
The designer must manually change the drawing to reflect
new design considerations. Since the systems store limited
part associativity, the designer must manually change all the
affected parts in the event of a design change. Needed is a
system that stores the part connectivity and uses as much of
the design data base as possible between iterations.

In summary, the problem with current CAD systems is they
retain virtually none of the logic that controls the geometric
shapes in the database, they are design documentors [4]. They
provide no more design support than current text editors pro-
vide composition support. The analysis programs are
equivalent to spelling checkers.

SYSTEM REQUIREMENTS

The functions a CAD system should exhibit in providing
additional design support are now described.

DESIGN AS A FUNCTION

A mechanical design can be thought of as a set of
mathematical functions where each function describes a
dimension in the design. Some of these functions are con-
stants, these can be thought of as design parameters.
Therefore given n design functions fi,..., f,, k design
parameters pj, ... , pi, one can define m dimensional
parameters dy, ..., dy, [5]. Depending on the design re-
quirements each dimensional parameter d; is dependent on
a subset of the design parameters p and other dimensional
parameters d or:

di = fj {dy, ..

.,dm, P1, ...,pj}

NETWORK DATA BASE FOR CAD

This type of description can be represented as a directed
graph, where each node is d;, the ith dimensional parameter

or py the kth design parameter, and the paths from the other
nodes are the arguments to the function f;. The idea or con-
cept of the design is represented by the network. An execu-
tion of the design is produced by assigning numerical values
to the parameters.

Note that each path is directed. For example a bearing in

“a pillow block, either the bearing defines the pillow block

or vice versa. They cannot mutually define one another. One
can see from the network that any change in a design
parameter ripples through the design, generating a new ex-
ecution of the idea represented by the network [6].

An example of a (CAD system using a network data base
and nodal values to define the solid geometries representing
each part would be:

d = f1 { p1, P2, P9, ... }
&b ==5H{p.d, ...}
d3 = f3 {p2, di, ps, ... }

partl is a cylinder with radius d;, length dj,
centered at (ds, dg4, ds).

Of course d3 can not be used in a function until it has been
defined. The functions can consist of anything, strength of
material laws, kinematics, dimension matching, random
number generation, etc.

CONTROL STRUCTURE

If one represents the design as a network, what type of
control structure would a program require? What types of
ancillary functions would be needed to support the design?
In describing the dimensional parameters, a procedural math
based language is needed, something like FORTRAN,
BASIC or APL would suffice.

Most designs require the choice of some standard parts,
i.e. structural steel, bolts, bearings etc. Since the method most
useful for storing tabular data is a relational data base, this
ingredient is included with the procedural language.

But what about checking for legal dimensional parameters?
Conditionals must be provided. That is not a problem—each
function can check for legal values. What happens if a dimen-
sional parameters is not legal? Does the design fail? If a
design fails in trying to satisfy dimensional parameters, the
control mechanism should back up and retry the previous
function since it may have more than one solution available.
What happens when more than one standard part will work
in the design, implying a multiplicity of executions? The
system should then generate all possible represented designs.



LOGIC PROGRAMMING

A logic programming language called Prolog provides the
three functions required to represent the design as a network:
math based procedural language, relational data base, and
automatic generation of all possible solutions. Prolog uses
first order predicate calculus to represent its data and resolu-
tion theorem proving to prove data base queries. The resolu-
tion theorem prover performs a depth first search in order
to resolve the predicates. For a description of the algorithm
see [7]. For a description of the Prolog language see [8].

Although Prolog is not considered a mathematical language
it contains all the FORTRAN intrinsic functions such as
trigonometry, logarithms, bit manipulation, etc. Although
APL is probably the best interactive language for vector or
matrix operations, Prolog can work with lists of numbers.
Inherent in Prolog is a relational data base. By defining
predicates with the same name, a table can be created and
searched. The generation of all possible solutions is also built
into Prolog. The inference algorithm will generate all possi-
ble solutions to a problem represented in the data base.

Prolog Examples—Prolog predicates are broken down into
two types, facts and rules. A fact is an assertion about
something, such as the sky is blue. In Prolog this would be
represented as:

Example of a Prolog Fact.

sky(blue).

A rule is an assertion about something, such as the fac-
torial of the number N is N times the factorial of N-1. In
Prolog this would be:

Example of a Prolog Rule.

factorial(N,Answer) :-
N1 is N-1,
factorial(N1,ANS1),
Answer is ANS1 * N.

This is a recursive definition of factorial. It needs a fact
as a terminal case, that is the factorial of one is one.

N

Prolog Definition of Factorial.

factorial(1,1).

factorial(N,Answer) :-
N1 is N-1,
factorial(N1,ANS1),

LOGIC PROGRAMMING IN DESIGN

Logic has been shown to be a good method for perform-
ing design [13], and is being used in other systems. The use
of a rule data base for CAD has been demonstrated in various
applications consisting of architectural design, crankcase
design, and v-belt drive design.

The Carter system [9] uses a rule data base to design
crankcases. Although this is not a general design program
and does not provide graphical output, it does illustrate the
use of a rule data base for design. The v-belt drive design
program also uses a rule data base. It uses OPSS5 instead of
Prolog. In architectural design, Swinson describes the use
of a fact dependency system, [11] and [12]. Another exam-
ple of an architectural application isdemonstrated by Markusz,
[13]. It uses Prolog to define a data base for the design of
apartments.

Although the systems describe are not general design pro-
grams, they all use the idea of describing the design with
logic.

A “SATISFICING” SYSTEM

Simon coined the word ‘‘satisficing’’ [14] to describe
“‘decision methods that look for good or satisfactory solu-
tions instead of optimal ones”’. The CAD system proposed
is a satisficing system. Given the design rules it will generate
all the possible designs represented by the rules. This is dif-
ferent from the idea of optimization. Optimization finds the
values of the design variables which will yield the optimal
value of an objective function. The classic example of an
objective function in structural optimization is weight
minimization.

RULE BASED CAD SYSTEM

The CAD system uses an entirely different data base than
conventional systems. To represent the geometry, the data
base consists of three parts:

1. Predicates describing each node of the network.
These are the design functions.

2. Predicates which define the geometry in a

parameterized form.

3. Predicates which describe the hierarchical structure

of the assembly.

To display a design, the design predicate would have to
be proven and the parameters passed to the geometric defini-
tions for display.

DATA BASE
The system uses Prolog’s predicates as the data base. It

is created directly by the user. The predicate’s name defines
its data type. The data types supported are:




® DESIGN: A design

e PART: Hierarchical Structure.

® Geometric Data Types
—REV__CLOSED: Solid of Revolution.
—REV__OPEN: Solid of Revolution.

—SLE: Solid of Linear Extrusion.
—SHE: Solid of Helical Extrusion.
The arguments to the predicate consist of the following:

e Name: Any legal Prolog structure* or atom the user
wishes to identify the data element. Examples are
“‘hello’’, ‘123, ““0.5"’, ‘‘part(34)”’.

e Attribute List: A Prolog list of structures containing
auxiliary data. Such data items consist of color, densi-
ty, reflectivity, or user documentation. It is open to the
user to put any type of data the user deems useful.

¢ Parameter List: This argument is used by the system
to pass the parameters to the data section. If the ele-
ment does not have any parameters it should be instan-
tiated (defined) as a Prolog empty list, i.e. [], else it
is a varnable.

e Data: The data structure contains various structures
depending upon the element’s data type defined by the
predicate’s name. The system uses the data stored here
to display what ever is defined.

DESIGN FUNCTION

The design function is executed in a design predicate. The
data to this predicate has two arguments. One is a predicate
which returns a list of parameters. The second is a list of
element names (corresponding to the name field) used in the
design. To generate all the designs represented by the rules,
the program uses Prolog’s built in backtracking. It calls the
- design function to get the parameter list, displays the
elements, and then by intentionally failing incurs the
backtracking algorithm of the resolution theorem prover to
try to prove the predicate a different way.
design( Name, Attributes ,

data(
Design__predicate, elements( element__1, ...,
element__n )

).

Geometry—The system defines solids by sweeping a
planer closed curve down another curve. This is one of many
methods for representing solid geometry for CAD [16]. It
was chosen for its compactness.

All the geometric definitions have two data items in com-
mon. They all have a planer curve definition and all are
rotated and translated by a general transformation matrix. See
appendix A for examples of each definition.

*A Prolog structure is essentially a named list, e.g. radius (1.5,
inches) is a structure of arity two. Its name or principal functor is
“‘radius”’, a Prolog atom. Structures may contain other structures.

Solid Of Revolution—
rev__open( Name , Attributes , Parameters,
data( angle( Theta ),
rf( Offset(X,Y,Z), angles( Yaw, Pitch,
Roll)),
curve( curve__definition )

).

rev__closed( Name , Attributes , Parameters,
data( angle( Theta ),
rf( Offset(X,Y,Z), angles( Yaw, Pitch,
Roll)),
curve( curve__definition )

))-

Solid Of Linear Extrusion—
sle( Name, Attributes, Parameters,
data( delta( Delta__X, Delta__Y, Delta__7),
rf(  Offset(X,Y,Z), angles( Yaw, Pitch,
Roll)),
curve( curve__definition )

)-

Solid Of Helical Extrusion—
she( Name, Attributes, Parameters,

data(
length( L ), mean__radius( R ), pitch( P ),
f( Offset(X,Y,Z), angles( Yaw, Pitch,
Roll)),
curve( curve__definition )
))-

Part. A part is a hierarchical structure. It is an element which
contains other elements. Along with passing the parameters to the
elements in the list it can also define local parameters to the elements.
Local parameters are stored in the element__parameters list struc-
ture. It can be used to define standard parts.
part( Name, Attributes, Parameters,

data(
f( Offset(X,Y,Z), angles( Yaw, Pitch,
Roll)),
elements( element__1, element__ 2 ,
., element__n) , Element__Parameters
).

Structure Definitions—
. rf( Offset(X,Y,Z), angles( Yaw, Pitch, Roll)) is a general
transformation matrix. The part is rotated by the angles Yaw,
Pitch, Roll, (Theta-z, Theta-y, Theta-x) and then is translated
by X,Y,Z. The angles are in degrees. The XYZ convention
is used to define the rotation matrix [17].

o curve__definition is a closed curve defined in the x-y plane.
It consists of a list of verticies and circular arc definitions.
The starting and ending verticies must coincide for a closed
curve arc and it must be defined in the counter-clockwise
direction.

A vertex is described as v(X,Y), a point in the x-y plane.

A circular arc drawn counter-clockwise is described as
arc(s(8X,SY),c(CX,CY),e(EX,EY)). Where (SX,SY) is the
start point of the arc, (CX,CY) is the center of the arc, and
(EX,EY) is the end point of the arc. All the points lie in the
x-y plane. A clockwise arc is described using the structure
name arc__cw instead of arc.



EXECUTION

The CAD system runs on a VAX 11/780 under VMS ver-
sion 3.4 operating system. It uses a Prolog interpreter
marketed by Prologica located in King of Prussia, Penn-
sylvania. For a description of the Prolog interpreter see [18].
The interpreter is virtual memory based and can interface with
other languages. This feature was used in the system to pro-
vide the display interface to the various graphical devices.

The Prolog part of the system defines the data base and
generates the model for display. A FORTRAN sub-system
is used in mapping the three dimensional world model to the
two dimensional screen. The Prolog consists of approximately
1300 lines of code and documentation, the FORTRAN part
consists of approximately 3000 lines of code and documen-
tation. See appendix C for a list of the main body of the Pro-
log code which produces a design from the user defined
predicates.

PISTON EXAMPLE

A spring loaded piston is used to demonstrate the CAD
system. It is a piston in a cylinder with two opposing springs.
The device was used in a robotics experiment and was design-
ed on a commercial CAD system in 1981. See appendix B
for the Prolog predicates which define the piston. The model
produced by the rule based CAD system is shown in figures
7,8 and 9 with the element ‘‘housing’’ shown sectioned for
clarity. Only one of the four possible designs is shown. Table
1 contains the parametric values defined by the design
predicate ‘piston‘. The names shown in this table correspond
to the structure definitions defined in the predicate ‘piston’.
These structure definitions also correspond to the structure
definitions in the solid geometric definitions.

DESCRIPTION OF THE PISTON DESIGN

The design is parameterized by five parameters:

® Minimum travel.

8 Load range, minimum and maximum.
® Rod diameter.

e Wall thickness.

The choice of design parameters was not arbitrary, but the
set shown is not necessarily the fundamental set. The wall
thickness is dependent on the load range. Along with design
parameters there are certain functional and geometric con-
straints which must be met. These were formulated in a
predicate called ‘‘constraint’’,

Design Constraints
. Spring must meet load constraints.
. Rod must fit inside the spring.
. Spring must have desired travel.

W N

4. Bearings must fit the rod.

Note for item 4 how Prolog is used to search for an ex-
plicit match. The predicate ‘‘ball__bushing’’ also instantiates
the dimensions of the ball bushing.

In the section defined as *‘spring data’’ note that more than
one spring was defined. Stock springs were used to
demonstrate the relational data base capability of Prolog and
how it was used in the CAD system.

The predicate ‘‘piston’’ is the user defined design predicate
which defines all the dimensions required for the geometric
elements. It first instantiates the design parameters by call-
ing the ‘‘spec’’predicates. The rest of the predicate defines
the other geometric parameters and checks if they are valid
by use of the ‘‘constraint’” predicate. Inter-part connectivity
is accomplished by arithmetic expressions defining
parameters to be passed to the geometric definitions. Some
examples of connectivity in the piston design are:

¢ Inside diameter of piston housing defined by the out-
side diameter of the spring.

o The length of the piston housing is defined by the
springs, desired travel, bearing length, and housing
thickness.

o The rod length is defined by the bearing spacing, bear-
ing lengths, and compressed lengths of the springs.

The directed graph representing the design connectivity is
shown in figure 6. The variable names correspond to the
variable names used in the predicate ‘piston’’ (variables
begin with a capital letter).

PISTON REDESIGN

New design possibilities are performed by changing the
“‘spec”’ predicates or by changing the design predicate or by
adding more standard parts to the data base such as springs
and bearings. If the predicate *‘spec(travel(1.0))”" is chang-
ed to *‘spec(travel(1.5))"’ the only design possibility is design
possibility 2 in table 1.

To illustrate how a modification was performed on the
design, two parts, internal__cap and lvdt__cap, were
modified. Instead of butting against the rod a spot face was
added to the caps so the rod fits in a blind hole. Appendix
B contains the code for the complete definition of the rede-
fined piston with new or modified predicates italicized. Table
2 contains the new parameters for the design and figures 10,
11 and 12 show the new piston. The only solid geometry
definition changed was that of the element called ‘‘cap’’.
Three equations were changed to reflect the addition of the
spotface and one predicate was added to relate the spotface
depth with the rod diameter.

The length of the Prolog code in appendix B may seem
unduly long to represent the eight parts making up the piston.
More than just geometries are defined, the logical connec-
tion between parts is represented, a relational data base of
stock springs is defined, and the geometry is represented in
parametric form.




CONCLUSION

The rule based CAD system described provides three func-
tions of a design system by: 1. supporting the iterative nature
of the design process, 2. defining the associativity between
parts in a design, and 3. allowing explicit design by
parameters and functions. As can be seen from the piston
example, new design executions can be obtained by chang-
ing the ‘‘spec’’ predicates. Iterations are performed by re-
fining the rule data base and the geometric elements are
described explicitly as a function of design parameters.

Prolog was used because it is a rule based language. Using
its resolution theorem prover to resolve the design represented
in its rule data base, it automatically generates all possible
solutions. Its predicates and list structures provide a flexible
representation of the solid models and of the design functions.

In preliminary design, much of the design time is spent
examining the effect parameter changes have on the design’s
configuration. If the connectivity between mating parts is
defined in the data base, a new design can be generated easily
by changing a parameter or a rule. This increases the effi-
ciency of the process.

The goal of this research is to develop a technique for
design synthesis. In design synthesis, the concept is described
in physical functions and capabilities rather than in geometric
terms. The CAD system developed here is a step toward that
goal in that it was used to develop the kinds of data struc-
tures and knowledge representations that define the required
geometric interrelationships of a mechanism.

The next steps in this research requires use of this program
as a design generator, the incorporation of test functions to
evaluate the designs and the heuristics to alter the rule data
base. Design synthesis could then be realized through the use
of generic design rules, a data base of parts and a translator
to convert functions and capabilities to geometric terms.
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APPENDIX A

ELEMENT DEFINITIONS

This appendix contains examples of element definitions along with the solid geometry they represent.

A-1




ELEMENT DEFINITIONS

sle( figurel ,
{ comment(’ Example of user documentation’) ], [] ,

data(
delta( 0.1E1 , 1 , 5.5),
rf( offset( 0,0,0), angles(0,0,0)),
curve( v(0,0), arc( s(4,0), c(4,2), e(4,4)),
v(0,4), v(0,0)))).

v(0,4) e(4,4)

c(4.2) l

v(0,0) 5(4,0)

delta(0.1E1,1,5.5)

Figure 1. Solid of Linear Extrusion.
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ELEMENT DEFINITIONS

rev__closed( figure2, (1, (] ,
data(
angle(36.0),
rf( offset( 0,0,0), angles(30,45,0)),
curve(
v(0,Y), v(4,Y),
arc__cw( s(4,YP) , ¢c(2,YP), e(0,YP) ),

v(0,Y)
) :- Yis 3.0, YPis Y + 4.0, !.

Figure 2. Solid of Revolution - Closed Curve.
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ELEMENT DEFINITIONS




ELEMENT DEFINITIONS

part( figured , 1, [1,

data(
if( offset(1,2,3), angles( 0,0,0)),
elements( ball, tube ),
[ ball(center([0,0,0]), radius(C)),
tube( id(ID), od(OD), length(L)) ]
) -

Cis 2.0,
IDisC*2 ,0DisID + 1, L is C*3, 1.
rev__open( ball, [] , Parameters , data(
angle(360.0),
rf( OFFSET , angles(0,0,0)),
curve(
arc( s(RAD,0), c(0,0), e(-(RAD),0))
)) -
param( ball(center(CENT), radius(RAD)),
Parameters),
OFFSET =.. [offset| CENT], !.
rev__closed( tube , [] , Paramters , data(
angle(360.0),
rf( offset(0,0,0), angles(0,0,0)),
curve( v(X1,Y1), v(X2,Y1), v(X2,Y2), v(X1,Y2), v(X1,Y1)
)) -
param( tube( id(ID), od(OD), length(L)), Paramters ),
X1 is 0.0,
YlisID /2,
X2is L + X1,
Y2 is OD * 0.5, !.

Figure 4. Part Definition with Parameters.
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ELEMENT DEFINITIONS

part( figure5, [] , {1,
data(
rf( offset(0,0,0), angles(30,75,0)),
elements( spring), [ spring( od(4), wire__dia( 0.25 ),
pitch(1), length(4)) 1)) :- !.
she( spring, [], Params,
data(
length(L), mean__radius(R), pitch(P),
rf( offset(0,0,0), angles(0,0,0)),
curve( arc( s(SX,0), ¢(0,0), e(SX,0))

)

) -

param( spring( od(OD), wire__dia(WD), pitch(P),
length(L)), Params),

R is (OD -WD) * 0.5,

$X is WD /2.0,!.

Figure 5. Solid of Helical Extrusion.
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APPENDIX B

SPRING PISTON EXAMPLE

new :- reconsult(pistonl), consult(userlib), !.

/*

DESIGN SPECIFICATIONS

*/

/* At least this Travel */
spec(travel(1.0)).
spec(load__max(30.0)).
spec(load__min(10.0)).
spec(rf(offset(0.0,0.0,0.0),angles(0.0,0.0,0.0))).
spec(thickness(0.25)).
spec(identity(
rf(offset(0.0,0.0,0.0),angles(0.0,0.0,0.0))
).
spec( rod,diameter(0.375)).
spec( rod,offset(0.0)).

/*

DESIGN CONSTRAINTS

*/

constraint( load , Load__at__solid__height, Max__load, Min__load ) :-
Load__at__solid__height < Max__load,
Load__at__solid__height > Min__load.

constraint( travel, Travel , Free__length , Solid__height ) :-
Travel < Free__length - Solid__height.

constraint( rod__and__spring , Spring__ID, Rod__diameter ) :-
Spring__ID > Rod__diameter.

design( piston , data(
piston , elements(rod,bearing1,bearing2,

internal__cap,lvdt__cap ,housing, springl, spring2) )) :-
.

/¥

PISTON DESIGN PREDICATE

*/
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/*

At solid height */



piston( [

/*

rod( length(Rod__length)),
rod( diameter( Rod__diameter)),
rod( offset( Rod__offset)),
spring1( offset( S__X)),
spring( id( Spring__ID)),
spring( od( Spring__OD)),
spring( length( Compressed__length)),
spring2( offset( S_X2)),
bearing( id( Bearing__ID)),
bearing( od( Bearing__OD)),
bearing( len( Bearing__len)),
bearing1( offset( B__ox1)),
bearing2( offset( B__ox2)),
housing(
radii(
H__spring__radius, H__bearing__radius,
H__rodclear__radius, H__outside__radius),
lens( H__springtravel , H_ bearings, H__rod ),
rf( offset(H__offset,0,0) , angles(0,0,0))
),
cap( thickness( Cap__thickness), od( Cap_OD) ),
cap__rf( offset( 0,0,0), angles(0,0,0)),
lvdt__cap__rf( offset(LVDT__offset,0,0) , angles(0,180,0) )

1) -

spec( load__max( Load__maximum)),
spec( load__min( Load__minimum)),
spec( travel( Travel)),

spec( thickness( Thick)),

spec( rod,diameter(Rod__diameter)),
spec( rod,offset(Rod__offset)),

spring(Spring__name, od(Spring__OD),hd(Spring__hd),
wd(Spring__wiredia),load__sh(Load__at__solid__height),
fl(Free__length), k(Spring__K), sh(Solid__height) ),
Find a valid spring */

constraint( load, Load__at__solid__height , Load__maximum ,
Load__minimum ),

constraint( travel, Travel , Free__length , Solid__height ),

ball__bushing(Type ,bore(Rod__diameter),od(Bearing__OD),
len(Bearing__len)),

Spring__ID is Spring __OD - 2 * Spring__wiredia,

/* Rod must fit inside the spring */
constraint( rod__and__spring , Spring__ID, Rod__diameter ),

‘B2




/*

DEFINE PART ASSOCIATIVITY

*/
Compressed__length is Free__length * 0.45 ,

Distance__between__bearings is 3 * Bearing__len,
S__ X is Rod__offset ,

S__X2 is S_X + Compressed__length +
Distance__between__bearings + Thick,

Rod__length is
Distance__between__bearings
+ (Compressed__length * 2.0) + Thick ,

Cap__thickness is Thick,
Cap__OD is Spring__hd,

Bearing__ID is Rod__diameter,
B__ox1 is Compressed__length + S__X,
B__ox2 is B__ox1 + 2.0 * Bearing__len,

H__spring__radius is ( Cap_OD * 0.5) + 0.1,
H__bearing__radius is Bearing__OD * 0.5,
H__rodclear__radius is Rod__diameter * 0.5 + 0.010,

H__springtravel is Cap__thickness + Compressed__length
+ Travel,

H__bearings is Distance__between__bearings ,

H__rod is Thick,

H__outside__radius is H__spring__radius + Thick,
H__offset is —(H__springtravel) + Compressed__length ,
LVDT__offset is Rod__length.

/*

LINEAR BEARING DATA BASE
THOMPSON LINEAR BEARING CO

*/
ball__bushing(’XA-61014’,bore(0.375),0d(0.6250),len(0.875)).

/*

STOCK SPRING DATA BASE
LEE SPRING COMPANY




*/

spring("LC-055J-6", 0d(0.720),hd(0.75),wd(0.055),
load__sh(13.0),f1(1.75),k(9),sh(0.4) ).

spring(’LC-055}-7°, 0d(0.720),hd(0.75),wd(0.055),
load__sh(13.0),f1(2.0),k(8.5),sh(0.421) ).

spring("LC-055J-5, 0d(0.720),hd(0.75),wd(0.055),
load__sh(13.0),f1(1.50),k(11.5),sh(0.331) ).

spring(’LC-065J-5’, 0d(0.720),hd(0.75),wd(0.065),
load__sh(19.0),f1(1.50),k(19.0),sh(0.465) ).

spring('LC-063h-5’, 0d(0.600),hd(0.625),wd(0.063),
load__sh(23.0),f1(1.250),k(30.0),sh(0.457) ).

/*
SOLID GEOMETRY DEFINITIONS
*/
part(rod,[color(green)],P,data(
Identity,
elements(cylinder),
[
radius(RAD),
center([0.0,0.0,0.0)),
length(LEN),
axis( X__unit )
]
) -

spec(identity(Identity)),

param( rod(diameter(D)),P),
param( rod(length(LEN)), P ),
X__unit(X__unit),

RADisD /2,

part(springL,[],P,

data(
rf(offset(X,0,0),angles(0,90,0)),

elements(spring),

]

) -

param(spring1(offset(X)),P),
'
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she(spring,[color(red)],P,
data(
length(Spring__length), mean__radius(Mean__radius),
pitch(Pitch),
rf( offset(0,0,0), angles(0,0,0) ), /* was
offset(X,0,0) */
curve( arc( s(Wire__start,0),c(Wire__center,0),
e(Wire__start,0)))

) -
param(spring(length(LEN)),P),
param(spring(id(ID)),P),
param(spring(od(OD)),P),
Mean__radius is ( ID + OD) / 4,
Spring__length is LEN,
Wire__dia is ( OD - ID)/2,
Wire__start is Wire___dia / 2,
Wire__center is 0.0,

Pitch is 4.0,
!

part(spring2,[color(blue)],P,

data(
rf(offset(X,0,0),angles(0,90,0)),
elements(spring),
{
) -

param( spring2( offset(X) ),P),
L

part(bearing,[],P,
data(
rf( offset(0,0,0), angles(0,0,0) ),
elements(tube),
[ tube( id(ID), od(OD), len(LEN),

center([ X, 0.0, 0.0]), axis(Xaxis)) ]

) -
X__unit( Xaxis),
param(bearing(len(LEN)),P),
param(bearing(id(ID)),P),
param(bearing(od(OD)),P),
param(center__x(X),P),
1

part(bearing2,[color(yellow)],P,
data(
rf(RFO,RFA),
elements(bearing),
[ center__x(X) ]

) -
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spec(rf(RFO,RFA)),
param( bearing2( offset(X) ),P),
.

part(bearing1,[color(yellow)],P,
data(
rf(RFO,RFA),
elements(bearing),
[ center__x(X) ]

) -

spec(rf(RFO,RFA)),
param( bearing1( offset(X) ),P),
1

rev__closed( housing ,
[ color(blue),
comment(’ The piston housing enclosing the mechanism’)],
Parameters,
data(
angle( 180 ),
rf(OFFSET ,angles(0,0,180)),

curve(
v(X1,Y4), v(X4,Y4), v(X4,Y1),
v(X3,Y1), v(X3,Y2), v(X2,Y2),
v(X2,Y3), v(X1,Y3), v(X1,Y4))
) -
param(
housing(
radii(

H_spring__radius, H__bearing__radius,
H__rodclear__radius, H__outside__radius),
lens( H__springtravel , H__bearings, H__rod ),
rf( OFFSET,ANGLES )),
Parameters ),
X1 is 0.0,
X2 is H__springtravel,
X3 is X2 + H__bearings,
X4 is X3 + H__rod,

Y1 is H__rodclear__radius,
Y2 is H__bearing__radius,
Y3 is H__spring__radius,
Y4 is H__outside__radius, !.

sleGunk,__,__,_ ) :- L
part(lvdt__cap,[color(cyan)],P,data(
rf( Offset , Angles ),

elements( cap ),[] )) :-
param( lvdt__cap__rf( Offset, Angles ) , P),!.
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part(internal__cap,[color(yellow)],P,data(
rf( Offset , Angles ),
elements( cap ),[])) :-

param( cap__rf( Offset, Angles ) , P),!.

sle( cap, [] , Params , data(
delta( 0,0 ,Length ),
rf( OFF , angles( 0,-(90),0)),
curve( arc{ s( X1,0), c( 0,0),e(X1,0)))
) -

spec(identity(rf(OFF,__))),
param( cap( thickness(Cap__thickness),
od( Cap__OD) ), Params),

X1 is Cap__OD * 0.5,
Length is Cap__thickness, !.
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rod
length
rod
diameter
rod
offset
springl
offset
spring
id
spring
od
spring
length
spring?2
offset
bearing
id
bearing
od
bearing
len
bearing1
offset
bearing2
offset
housing
radii
lens
f
offset
angles 0.0
cap
thickness
od
cap__r1f
offset
angles
lvdt__cap__rf
offset
angles

SPRING PISTON EXAMPLE

Table 1. Design Possibility 1.

4.4500

0.3750

0.0

0.0

0.6100

0.7200

0.7875

3.6625

0.3750

0.6250

0.8750

0.7875

2.5375

0.4750
2.375

-1.2500
0.0

0.2500
0.7500

0.0
0.0

4.4500
0.0

0.3125
2.6250

0.0
0.0

0.0
0.0

0.0
180.0

0.1975
0.2500

0.0

0.0
0.0

0.0
0.0

0.7250



rod
length
rod
diameter
rod
offset
spring1
offset
spring
id
spring
od
spring
length
spring2
offset
bearing
id
bearing
od
bearing
len
bearing1
offset
bearing2
offset
housing
radii
lens
f
offset
angles
cap
thickness
od
cap__rf
offset
angles
Ivdt__cap__rf
offset
angles

4.6750

0.3750

0.0

0.0

0.6100

0.7200

0.9000

3.7750

0.3750

0.6250

0.8750

0.9000

2.6500

0.4750
2.1500

-1.2500
0.0

0.2500
0.7500

0.0
0.0

4.6750
0.0

Table 1. Design Possibility 2.

0.3125
2.6250

0.0
0.0

0.0
0.0

0.0
180.0
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0.1975
0.2500

0.0
0.0

0.0
0.0

0.0
0.0

0.7250



rod
length
rod
diameter
rod
offset
spring1
offset
spring
id
spring
od
spring
length
spring2
offset
bearing
id
bearing
od
bearing
len
bearing1
offset
bearing2
offset
housing
radii
lens
f
offset
angles
cap
thickness
od
cap__rf
offset
angles
Ivdt__cap__rf
offset
angles

Table 1. Design Possibility 3.

4.2250

0.3750

0.0

0.0

0.6100

0.7200

0.6750

3.5500

0.3750

0.6250

0.8750

0.6750

2.4250

0.4750
1.9250

-1.2500
0.0

0.2500
0.7500

0.0
0.0

4.2250
0.0

0.3125
2.6250

0.0
0.0

0.0
0.0

0.0
180.0

0.1975
0.2500

0.0
0.0

0.0
0.0

0.0
0.0

0.7250



Table 1. Design Possibility 4.

rod
length 4.2250
rod
diameter 0.3750
rod
offset 0.0
springl
offset 0.0
spring
id 0.5900
spring
od 0.7200
spring
length 0.6750
spring2
offset 3.5500
bearing
id 0.3750
bearing
od 0.6250
bearing
len 0.8750
bearing1
offset 0.6750
bearing2
offset 2.4250
housing
radii 0.4750 0.3125 0.1975 0.7250
lens 1.9250 2.6250 0.2500
f
offset -1.2500 0.0 0.0
angles 0.0 0.0 0.0
cap
thickness 0.2500
od 0.7500
cap__1f
offset 0.0 0.0 0.0
angles 0.0 0.0 0.0
Ivdt__cap__rf
offset 4.2250 0.0 0.0
angles 0.0 180.0 0.0

B-11




OF POOR QUALITY

L

ORIGINAL Frii

SPRING PISTON EXAMPLE

QI” buudg

— snipes BulRIq H _

_ snipes Jeajopos H _

a0~ buyueag
a1~ buyseag

BIpasM DuIIdS

T~

sa|qetieA
31e1pawIIA| @

go  buladg

a0~ dey

_ snipes” buluds™ H _

!

sigjaweled
ubisaq
Jajaulesey
|euoisuawiq U
aN3937

* snipes” apIsino” H _A|

yybuaj —poy

3353)0° 10AY

Yybua|  passaidwo))

/‘ jaAenbuLgs—

_

b

ssauoIyy” ded

¥

Figure 6. Dimensional Connectivity of Spring Piston.
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SPRING PISTON EXAMPLE

Figure 7. Spring Piston — Side View.
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Figure 8. Spring Piston — Front View.
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SPRING PISTON EXAMPLE

Figure 9. Spring Piston — Isometric View.
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SPRING PISTON EXAMPLE
Redesigned Spring Piston Definition

/¥

DESIGN SPECIFICATIONS

*/

/* At least this Travel */
spec(travel(1.0)).
spec(load__max(30.0)).
spec(load__min(10.0)).
spec(rf(offset(0.0,0.0,0.0),angles(0.0,0.0,0.0))).
spec(thickness(0.25)).
spec(identity(
rf(offset(0.0,0.0,0.0),angles(0.0,0.0,0.0))
).
spec( rod,diameter(0.375)).
spec( rod,offset(0.0)).

/*

DESIGN CONSTRAINTS

*/

constraint( load , Load__at__solid__height, Max__load, Min__load ) :-
Load__at__solid__height < Max__load,
Load__at__solid__height > Min__load.

constraint( travel, Travel , Free__length , Solid__height ) :-
Travel < Free__length - Solid__height.

constraint( rod__and__spring , Spring__ID, Rod__diameter ) :-
Spring__ID > Rod__diameter.

design( piston , data(
piston , elements(rod,bearingl,bearing2,
internal__cap,lvdt__cap ,housing, springl, spring2) )) :-
1

/*

PISTON DESIGN PREDICATE

*/
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At solid height */



piston( [

/*

rod( length(Rod__length)),
rod( diameter( Rod__diameter)),
rod( offset( Rod__offset)),
spring1( offset( S_X)),
spring( id( Spring__ID)),
spring( od( Spring__OD)),
spring( length( Compressed__length)),
spring2( offset( S_X2)),
bearing( id( Bearing _ID)),
bearing( od( Bearing__OD)),
bearing( len( Bearing__len)),
bearing1( offset( B__ox1)),
bearing2( offset( B__ox2)),
housing(
radii(
H___spring__radius, H__bearing__radius,
H__rodclear__radius, H__outside__radius),
lens( H__springtravel , H__bearings, H__rod ),
rf( offset(H__offset,0,0) , angles(0,0,0))
)s
cap( thickness( Cap__thickness), od( Cap_OD) ),
cap__rf( offset( 0,0,0), angles(0,0,0)),
Ivdt__cap__rf( offset(LVDT__offset,0,0) , angles(0,180,0) ),
cap__spotface(Cap__spotface)

1):-

spec( load__max( Load__maximum)),
spec( load__min( Load__minimum)),
spec( travel( Travel)),

spec( thickness( Thick)),

spec( rod,diameter(Rod__diameter)),
spec( rod,offset(Rod__offset)),

spring(Spring__name, od(Spring__OD),hd(Spring__hd),
wd(Spring__ wiredia),load__sh(Load__at__solid__height),
fi(Free__length), k(Spring__K), sh(Solid__height) ),
Find a valid spring */

constraint( load, Load__at__solid__height , Load__maximum
, Load__minimum ),

constraint( travel, Travel , Free__length , Solid__length ),

ball__bushing(Type ,bore(Rod__diameter),od(Bearing__OD),
_ len(Bearing__len)),

/* Rod must fit inside the spring */



1%

*/

Spring__ID is Spring__OD - 2 * Spring__wiredia,
constraint( rod__and__spring , Spring _ID, Rod__diameter ),

DEFINE PART ASSOCIATIVITY

Compressed__length is Free__length * 0.45 ,
Distance__between__bearings is 3 * Bearing__len,
spotface__depth( Cap__spotface , Rod__diameter ),
S__X is Rod__offset + Cap__spotface,

S_X2 is S_X + Compressed__length +

Distance__between__bearings

/*

*/

+ Thick,

Rod__length is
Distance__between__bearings
+ (Compressed__length * 2.0) + Thick +

2 * Cap__spotface ,

Cap__thickness is Thick,
Cap__thickness__OFFSET is O , /* Prolog quirk */

Cap__OD is Spring__hd,

Bearing__ID is Rod__diameter,
B__ox!1 is Compressed__length + S__X,
B__ox2 is B__ox1 + 2.0 * Bearing__len,

H__spring__radius is ( Cap__OD * 0.5) + 0.1,
H__bearing__radius is Bearing__OD * 0.5,
H__rodclear_ radius is Rod__diameter * 0.5 + 0.010,

H__springtravel is Cap__thickness + Compressed__length
+ Travel,

H__bearings is Distance__between__bearings ,

H__rod is Thick,

H__outside__radius is H__spring__radius + Thick,

H__offset is — (H__springtravel) + Compressed__length

+ Cap__spotface,
LVDT__offset is Rod__length.

LINEAR BEARING DATA BASE
THOMPSON LINEAR BEARING CO

ball__bushing(’XA-61014’ ,bore(0.375),0d(0.6250),1en(0.875)).
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/*

STOCK SPRING DATA BASE
LEE SPRING COMPANY

*/

spring("'LC-0553-6’, 0d(0.720),hd(0.75),wd(0.055),
load__sh(13.0),f1(1.75),k(9),sh(0.4) ).

spring("LC-055J-7°, 0d(0.720),hd(0.75),wd(0.055),
load__sh(13.0),1(2.0),k(8.5),sh(0.421) ).

spring("LC-055J-5", 0d(0.720),hd(0.75),wd(0.055),
load__sh(13.0),1(1.50),k(11.5),sh(0.331) ).

spring(’LC-065J-5°, 0d(0.720),hd(0.75),wd(0.065),
load__sh(19.0),f1(1.50),k(19.0),sh(0.465) ).

spring(’LC-063h-5", 0d(0.600),hd(0.625),wd(0.063),
load__sh(23.0),f1(1.250),k(30.0),sh(0.457) ).

/* Spot face definition */

spotface__depth( SF , RD ) :-
SFl is RD / 4.0,
/* Make it a fraction of eights. */
make__integral__ fraction( SF1 , 8.0, SF ),
SF>0,!.

spotface__depth( 0.125 , __ ) :-).

Make__integral__fraction( R , FRAC, IF ) :-
IF is float( round(R *+ FRAC)) / float(FRAC), !.

/*
SOLID GEOMETRY DEFINITIONS
*/
part(rod,[color(green)],P,data(
Identity,
elements(cylinder),
[
radius(RAD),
center([0.0,0.0,0.0)),
length(LEN),

axis( X__unit )
]
) -
spec(identity(Identity)),
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param( rod(diameter(D)),P),
param( rod(length(LEN)), P ),
X__unit(X__unit),

RADisD /2, .

part(spring1,[],P,
data(
rf(offset(X,0,0),angles(0,90,0)),
elements(spring),
(l
) -

param(spring1(offset(X)),P),
1

she(spring,[color(red)],P,
data(
length(Spring__length), mean__radius(Mean__radius),
pitch(Pitch),
rf( offset(0,0,0), angles(0,0,0) ), /* was
offset(X,0,0) */
curve( arc( s(Wire__start,0),c(Wire__center,0),
e(Wire__start,0)))

) -
param(spring(length(LEN)),P),
param(spring(id(ID)),P),
param(spring(od(OD)),P),
Mean__radius is (ID + OD) / 4,
Spring__length is LEN,
Wire__dia is ( OD - ID)/2,
Wire__start is Wire__dia / 2,
Wire__center is 0.0,

Pitch is 4.0,
'

part(spring2,[color(blue)], P,

data(
rf(offset(X,0,0),angles(0,90,0)),

elements(spring),

1l

) -

param( spring2( offset(X) ),P),

!
part(bearing,{],P,

data(
rf( offset(0,0,0), angles(0,0,0) ),
elements(tube),
[ tube( id(ID), od(OD), len(LEN),

center([ X, 0.0, 0.0]), axis(Xaxis)) ]
) -

X__unit( Xaxis),
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param(bearing(len(LEN)),P),
param(bearing(id(ID)),P),
param(bearing(od(OD)),P),

param(center__x(X),P),
'

part(bearing2,[color(yellow)],P,
data(
rf(RFO,RFA),
elements(bearing),
[ center__x(X) ]
) -
spec(rf(RFO,RFA)),
param( bearing2( offset(X) ),P),
1

part(bearing1,[color(yellow)],P,
data(
f(RFO,RFA),
elements(bearing),
[ center__x(X) ]
) -
spec(rf(RFO,RFA)),
param( bearing1( offset(X) ),P),
1

rev__closed( housing ,
[ color(blue),
comment(‘ The piston housing enclosing the mechanism’)],
Parameters,
data(
angle( 180 ),
rf(OFFSET ,angles(0,0,180)),
curve(
v(X1,Y4), v(X4,Y4), v(X4,Y1),
v(X3,Y1), v(X3,Y2), v(X2,Y2),
v(X2,Y3), v(X1,Y3), v(X1,Y4))
) -

param(
housing(
radii(
H__spring__radius, H__bearing__radius,
H__rodclear__radius, H__ outside__radius),
lens( H__springtravel , H_ bearings, H__rod ),
rf( OFFSET,ANGLES )),
Parameters ),
X1 is 0.0,
X2 is H__springtravel,
X3 is X2 + H__bearings,
X4 is X3 + H__rod,
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Y1 is H__rodclear__radius,
Y2 is H__bearing__radius,
Y3 is H__spring__radius,
Y4 is H__outside__radius, !.

sleGunk, __,__,_):- L

part(lvdt__cap,[color(cyan)],P,data(
rf( Offset , Angles ),
elements( cap ),[] )) :-
param( lvdt__cap__rf( Offset, Angles ) , P),!.

part(internal__cap, [color(yellow)],P,data(
rf( Offset , Angles ),
elements( cap ),[]1)) :-
param( cap__rf( Offset, Angles ) , P),!.

rev__open( cap, [] , Params , data(
angle(360.0),
rf( OFF ,ANG),
curve( v( X1,Y1), v(X1,Y2), v(X3,Y2), v(X3,Y4),
v(X5,Y4), v(X5,Y1)

)
) -
spec(identity(rf(OFF,ANG))),
param( cap( thickness(Cap__thickness),
od( Cap_OD) ), Params),
param( cap__spotface(SP), Params),
param( rod(diameter( Rod__dia)) , Params),

X1 is 0.0, Ylis 0.0,
X3 is SP, Y2 is Rod__dia * 0.5,
X5 is SP - Cap__thickness , Y4 is Cap_OD * 0.5, !
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SPRING PISTON EXAMPLE
Table 2. Redesign Possibility 1.
rod
length 4.7000
rod
diameter 0.3750
rod
offset 0.0
springl
offset 0.1250
spring
id 0.6100
spring
od 0.7200
spring
length 0.7875
spring2
offset 3.7875
bearing
id 0.3750
bearing
od 0.6250
bearing
len 0.8750
bearingl
offset 0.9125
bearing?2
offset 2.6625
housing
radii 0.4750 0.3125 0.1975 0.7250
lens 2.375 2.6250 0.2500
f
offset -1.2500 0.0 0.0
angles 0.0 0.0 0.0
cap
thickness 0.2500
od 0.7500
cap__rf
offset 0.0 0.0 0.0
angles 0.0 0.0 0.0
vdt__cap__rf
offset 4.7000 0.0 0.0
angles 0.0 180.0 0.0
cap_spotface 0.1250
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rod
length
rod
diameter
rod
offset
springl
offset
spring
id
spring
od
spring
length
spring2
offset
bearing
id
bearing
od
bearing
len
bearingl
offset
bearing2
offset
housing
radii
lens
rf
offset
angles
cap
thickness
od
cap__if
offset
angles
vdt _cap__rf
offset
angles
cap__spotface

Table 2. Redesign Possibility 2.

4.9250
0.3750
0.0
0.1250
0.6100
0.7200
0.9000
3.9000
0.3750
0.6250
0.8750
1.250
2.7750

0.4750
2.1500

-1.2500
0.0

0.2500
0.7500

0.0
0.0

4.9250
0.0
0.1250

0.3125
2.6250

0.0
0.0

0.0
0.0

0.0
180.0
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0.1975
0.2500

0.0
0.0

0.0
0.0

0.0
0.0

0.7250



Table 2. Redesign Possibility 3.

rod
length 4.4750
rod
diameter 0.3750
rod
offset 0.0
springl
offset 0.1250
spring
id 0.6100
spring
od 0.7200
spring
length J.6750
spring2
offset 3.6750
bearing
id 0.3750
bearing
od 0.6250
bearing
len 0.8750
bearingl
offset 0.8000
bearing2
offset 2.5500
housing
radii 0.4750 0.3125 0.1975 0.7250
lens 1.9250 2.6250 0.2500
f
offset -1.2500 0.0 0.0
angles 0.0 0.0 0.0
cap
thickness 0.2500
od 0.7500
cap__rf
offset 0.0 0.0 0.0
angles 0.0 0.0 0.0
vdi__cap__rf
offset 4.4750 0.0 0.0
angles 0.0 180.0 0.0
cap__spotface 0.1250
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rod
length
rod
diameter
rod
offset
springl
offset
spring
id
spring
od
spring
length
spring2
offset
bearing
id
bearing
od
bearing
len
bearingl
offset
bearing2
offset
housing
radii
lens
f
offset
angles
cap
thickness
od
cap_rf
offset
angles
lvdt_cap__rf
offset
angles
cap__spotface

4.4750

0.3750

0.0

0.1250

0.5900

0.7200

0.6750

3.6750

0.3750

0.6250

0.8750

0.8000

2.5500

0.4750
1.9250

Table 2. Redesign Possibility 4.

-1.2500

0.0

0.2500
0.7500

0.0
0.0

4.4750
0.0
0.1250

Table 2 REDESIGN POSSIBILITY
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0.3125
2.6250

0.0
0.0

0.0
0.0

0.0
180.0

0.1975
0.2500

0.0
0.0

0.0
0.0

0.0
0.0

0.7250



SPRING PISTON EXAMPLE

Figure 10. Redesigned Spring Piston — Side View.
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SPRING PISTON EXAMPLE

Figure 11. Redesigned Spring Piston — Front View.
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SPRING PISTON EXAMPLE

Figure 12. Redesigned Spring Piston — Isometric View.
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APPENDIX C

PROLOG CAD SYSTEM CODE

dl :- machine__code(31,[],_).
erase__dl :- machine__code(32,{],_).
init :- set(vt125), set(show(vertex)), set(width(40.0)).

cad :-
consult(’[ntp.cad.prolog]mth’),
mth__init,
consult(’[ntp.cad.prolog]lib’),
op(200,fx,set),
assert(sys__cvue(0.0,0.0,0.0)),
assert(sys__rvue(0.0,0.0,0.0)),
assert(sys__width(100.0)),
assert(sys__resolution(8)),
assert(display__verify(_)),
18
/*
SET PREDICATES
*/
/* The following arguments are valid for SET
Terminals
vt125 Graphic output formatted for a VT125.
lexidata Graphic output formatted for a Lexidata Solid View.
Display
resolution(N) N is the number of line segments that approximate a curved surface.
show(vertex) Graphic output will display the brep as lines.
show(patch) Graphic output will display the brep as faces.
clip(depth) Tumn on depth clipping
clip(nodepth)  Turn off depth clipping ( just x and y ).
cvue(X,Y,Z) Set the center of the screen to X,Y,Z.
rvue(R,P,Y) Set the rotation of the screen by R,P,Y in degrees.
width(W) Set the width of the screen W units.
[no}verify Enable/Disable printing of design paramters used in a design.
*/

set(vt125) :- not(sys__terminal(vt125)),
retractall(sys__terminal(_)),
assert(sys__terminal(vt125)),
(
( sys__terminalinit(vt125),
machine__code(15,[1,) )
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set(vti25) :- !.

( assert(sys__terminalinit(vt125)) ,
machine__code(10,{],—) )

)s

view__window,!.

set(lexidata) :- not(sys__terminal(lexidata)),

set(lexidata) :- !.

retractall(sys__terminal(__)),

assert(sys__terminal(lexidata)),

set(show(patch)),

(

( sys__terminalinit(lexidata),

machine__code(7,{],) )

( assert(sys__terminalinit(lexidata)) ,
machine__code(1,[],__) ) ),

view__window, !.

set(1a100) :- not(sys__terminal(1a100)),

set(1al00) :- !.

retractall(sys__terminal(__)),
assert(sys__terminal(1a100)),
machine__code(42,[1,),

(
( sys__terminalinit(1a100) )

( assert(sys__terminalinit(la100)) ,
machine__code(40,[1,) ) ),
view__window, !.

set(resolution(N)) :- N > 2, retract(sys_- resolution(_)),

assert(sys__resolution(N)), !.

set(resolution(N)) :- nl, write(’ Illegal resolution ’),

write(N), nl, break, abort.

set(show(vertex)) :-
not(sys__show(vertex)) ,

retracta
assert(s

l1(sys__show(_)),
ys_show(vertex)).

set(show(patch)) :-
not(sys__show(patch)),
retractall(sys__show(_)),
assert(sys__show(patch)).

set(cvue(A,B,C)) :-
X is float(A), Y is float(B), Z is float(C),
retract(sys__cvue(__,__,_ ),
assert(sys_cvue(X,Y,7Z)),
view__window, !.




set(rvue(A,B,C)) :-
X is float(A), Y is float(B), Z is float(C),
retract(sys__rvue(__,__,_)),
assert(sys__rvue(X,Y,2)),
view__window, !.

set(width(A)) :-
X is float(A),
retract(sys__width(__)),
assert(sys__width(X)),
view__window, !.
set(verify) :-
retractall(display__verify(_)),
assert(
(display__verify(R) :-
nl, display__verify1(R), !) ), !.
set(noverify) :-
retractall(display__verify(_)),
assert( display__verify(_) ), !.

set(clip(depth)) :- machine__code(31,[0.0],_), !.
set(clip(nodepth)) :- machine__code(31,[1.0],_), !.

view__window :-
sys__width(WIDTH),
sys__cvue(X,Y,Z),

sys__rvue(Z_ANGLE,Y__ANGLE,X__ANGLE),
machine__code(30,[WIDTH,X,Y,Z,Z__ANGLE,Y__ANGLE,X__ANGLE]} ,_),

alphamode :- sys__terminal(vt125), machine__code(12,[],), !.

alphamode :- sys__terminal(lexidata), !.
alphamode :- sys__terminal(lal00), !.

erase :- sys__terminal(vt125), machine__code(11,[],_).

erase :- sys__terminal(lexidata), machine__code(6,[],).

erase :- sys__terminal(1a100), machine__code(43,[],_).

plot :- sys__terminal(la100), machine__code(41,[],_),!.

plot.

edit(A) :- machine__code(20,[A],_), !.

/%

*/

VIEW

view :- sys__view(Name), view(Name), !.
view( Name ) :- retractall( sys__view(_)),
assert( sys__view(Name)),
view( Name , [] , 0), alphamode, !.
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view( [First__name| Rest__of__names] , Params , Indent ) :-
view( First__name, Params, Indent),
view( Rest__of__names, Params , Indent ), !.

view( [}, —, )L

view( Name , Params , Indent ) :-
view__design( Name , Params , Indent ),

alphamode, !.

view( Name , Params , Indent ) :-
view__part( Name , Params , Indent ),

alphamode, !.

view( Name , Params , Indent ) :-
view__sle( Name , Params , Indent ),
alphamode, !.

view( Name , Params , Indent ) :-
view__rev__open( Name , Params , Indent ),
alphamode, !.

view( Name , Params , Indent ) :-
view__rev__closed( Name , Params , Indent ),
alphamode, !.

view( Name , Params , Indent ) :-
view__she( Name , Params , Indent ),
alphamode, !.

view( Name , Params , Indent ), :-
nl, write(’ Definition not found: ’ ) , write(Name),

nl, restart, !.
/*
DESIGN
*/
view__design( Name , __ , Ident ) :-

design( Name , data( Design__function , Elements ) ),
display__name( design, Ident, Name),
Elements =.. [elements|Names],

view_all_designs( Names , Design__function , Ident ), !.

view__all__designs( Names , Design__function , Ident ) :-

DF =.. [Design__function,Params],
call(DF),
display__verify(Params),
Identl is Ident + 2,
view( Names , Params, Identl ),
nl,
break,
fail, !.
view__all__designs( _ , __, __ ) :-
nl, write( * Design options exhausted * ),nl, restart, !.
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/*

PART

*/

view__part( Name , Parameters , Indent ) :-
part( Name , Attribute__list , Parameters , Data),
parse__attributes( Attribute__list ) ,
display__name( part, Indent, Name),
Data =.. [data,rf(Offset,Angles), Elements, E__params ],
Elements=.. [ elements|Element__list ],
append(E__params, Parameters , P3),

/* Append the new transformation matrix */

mth__trnsmat( Offset, Angles, Matrix),
sys__transformation( Sys__matrix),
mth__append__trnsfrm( Matrix, Sys__matrix,
New__matrix),
asserta( sys__transformation( New__matrix)),
!, trimcore,
/* Now view each element */

Indentl is Indent + 2,
view( Element__list , P3 , Indentl ),

/* Now remove the rf. and retract it. */
retract(sys__transformation(New__matrix)), !.

/*

SLE

*/
view__sle( Name , Parameters , Indent ) :-
sle( Name , Attribute__list , Parameters ,
data(Delta,rf(Offset,Angles),Curve)),
display__name( sle, Indent , Name),
parse__attributes( Attribute__list ) ,
Delta =.. [delta|Delta__vector],
mth__tmsmat(Offset, Angles,Matrix),
sys__transformation(Sys__matrix),
mth__append__trnsfrm(Matrix,Sys__matrix,New__matrix),




gmtr__curve__to__vertex( Curve , Verticies__2d),
New__matrix = [New__matrix__R,_],
mth__mul__matvec(New__matrix__R,Delta__vector,
Delta__vector__tm),
display__make__sle(Verticies_ 2d , New__matrix,
Delta__vector__tm ),!.

display__make__sle(Vertex , Matrix , Delta__vector__tm ) :-
gmtr__verts2d__3d__z(Vertex , Verts3d),
mth__trnsfrm(Matrix , Verts3d , Vtl ),
mth__add__cl(Delta__vector__tm,Vtl,Vt2),
display__make__sle1(Vt1,Vt2), 1.

/* Display Verticies */

display__make__slel( Bottom__verts , Top__verts ) :-
sys__show(vertex),

display_._make__sle__vertex(Bottom__verts , Top__verts), !.

display__make__sle__vertex([F1,V1|R1],[F2,V2|R2] ) :-
display__verticies([F1,V1,V2,F2]),
display__make__sle__vertex((V1|R1] , [V2|R2]), !.

display__make__sle__vertex( [_], [_] ) :- .

/* Display Patches */

display__make__slel( Bottom__verts , Top__verts ) :-

sys__show(patch),
display__make__sle__patch(Bottom__verts , Top__verts), !.

display__make__sle__patch( Bottom__verts , Top__verts ) :-
display__patch(Bottom__verts),

/* Save the first vertex */
display__make__sle__patch1(Bottom__verts , Top__verts ),
reverse(Top__verts , Top),
display__patch(Top),!.

display__make__sle__patch1([F1,V1|R1],[F2,V2|R2] ) :-
display__patch(fF1,F2,V2,V1]),
display__make__sle__patch1([V1|R1] , [V2|R2]), !.

display.__make__sle_ patchi( [_], [_]) :- !.




/*

REV__CLOSED

*/

view__rev___closed( Name , Parameters , Indent ) :-
rev__closed( Name , Attribute__list , Parameters ,
data(angle(Angle) , rf(Offset,Angles) , Curve)),

display__name( rev__closed, Indent , Name ),
parse__attributes( Attribute__list ) ,

Angle__rad is Angle * 0.01745329252,
mth__tmsmat(Offset, Angles,Matrix),
sys__transformation(Sys__matrix),
mth__append__trnsfrm(Matrix,Sys__matrix,New__matrix),

gmtr__curve__to__vertex( Curve , Verticies_ 2d),

display__make__revclosed( Verticies__2d , New__- matrix,
Angle__rad ),

display__make__revclosed__angles( Angle , Verticies__2d,
New__matrix),

display__make__revclosed( [[Xvert,Yvert]|Rvert] , Matrix , Angle )

sys__resolution(Res),

Count is Res + 1,
Angle__increment is Angle / Res,
gmtr__arcverts1(

Yvert, /* The radius */
0.0, /* X center */
0.0, /* Y Center */
0.0, /* Start angle */
Angle__increment ,

Count , /¥ Count for loop*/
Verts ),

gmtr__verts2d__3d__zyx(Xvent,Verts, Verts1),

mth__trsfrm( Matrix , Vertsl , Verts__world ),

display__make__revclosed__1( Verts__world , Rvert , Matrix ,
Angle__increment , Count ).

display__make__revclosed__1( V1 , [[Xvert,Yvert}|Rvert] , Matrix
, Angle__increment , Count ) :-
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gmtr__arcverts1(

Yvert, /* The radius */
0.0, /* X center */
0.0, /* Y Center */
0.0, /* Start angle */

Angle__increment ,

Count , /* Count for loop*/

Verts ),
gmtr__verts2d__3d__zyx(Xvert,Verts,Vertsl),
mth__trnsfrm( Matrix , Vertsl , V2 ),
display__make__genrev__quad( V1 , V2),
display__make__revclosed__1( V2 , Rvert , Matrix ,

Angle__increment , Count ), !.
display__make__revclosed__1(__,{},__,_, ) :-'.

display__make__revclosed__angles( Angle , __, __) :-
0.1E-8 > abs(Angle — 360.0) , !.
display__make__revclosed__angles( Angle , Verticies__2d, Matrix ) :-
sys__show(vertex),
dmrvat( Angle, Matrix , [Verticies__2d] ), !.

display___make__revclosed__angles( Angle , Verticies__2d, Matrix ) :-
reverse( Verticies__2d, RV2D ),
gmtr__make__curve__convex( RV2D, RV2D , TRIANGLES ),
dmrvat( Angle, Matrix , TRIANGLES ), !.
dmrvat( __, _ ,[]):- L .
dmrvat( Angle, Matrix , [Verticies_ 2d|RV2D] ) :-
gmtr__verts2d__3d__z( Verticies__2d, V3d),
mth__trnsfrm( Matrix , V3d , V3d__a ),
display__ngon( V3d__a),
mth__tmsmat(offset(0,0,0),angles(0,0,Angle), Matrix 1),
mth__append__tmsfrm(Matrix1,Matrix, New__matrix),
mth__trsfrm( New__matrix, V3d , V3d_b ),
reverse( V3d__b, V3DB ),
display__ngon( V3DB ),
dmrvat( Angle, Matrix, RV2D ),
'

/*

SOLID OF HELICAL EXTRUSION

*/
view__she( Name , Parameters , Indent ) :-

she( Name , Attribute__list , Parameters ,
data(
length(Length),
mean__radius(Mean__radius),
pitch(Pitch),
f(Offset, Angles),
Curve)

)




display__name( she, Indent , Name),
parse__attributes( Attribute__list ) ,

mth__trnsmat( Offset , Angles , Matrix ),
sys__transformation(Sys__matrix),
mth__append__trnsfrm( Matrix, Sys__matrix, Global__mat- rix),

sys__resolution(Resolution),

mth_pi(Pi),

/* Pitch is [turns/inch] */

/* Number of radians */

No__of__tumns is Pitch * Length * Pi * 2.0,

Count is round( Pitch * Length * Resolution),
Angle__increment is No__of__turns / Count,

Z__incis 1.0/ (2 * Pi * Pitch ),

X is Mean__radius * cos(Angle__increment),

Y is Mean__radius * sin(Angle__increment),

Z is Z__inc * Angle__increment,

Angle__inc__degree is Angle__increment * 180.0 / Pi,

X_ delta is X - Mean__radius,
VNR = [ X__delta, Y, Z ],

mth__trsmat( offset( 0 , 0, Z),
angles( Angle__inc__degree ,0,0) , Spin__matrix ),
/* The angles needed to rotate the curve */
/* perpendicular to the helix direction */
mth__axis__angles__z( VNR, Helix__angles ),

/* Convert bounding curve to verticies */
gmtr__curve__to__vertex( Curve , Bounding__verticies ), !,
/* Set the z value to be 0.0 */
gmtr__verts2d__3d__z( Bounding__verticies ,
Bounding__verticies__3D ), !,
/*move the curve over to the helix*/
Ang =.. [angles|Helix__angles ],

mth__trnsmat( offset( Mean__radius , 0, 0),
Ang , Helix__matrix ),

mth__trsfrm( Helix__matrix, Bounding__vertici-Cles__3D ,

Bverts__normal ), !,
mth__tmsfrm( Global__matrix, Bverts__normal, BVF ),
display__ngon( BVF ), !,

display__make__she( Count, BVF, Bverts__normal ,
Spin__matrix , Global__matrix),
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'

display__make__she( 0,V,__,__,_ ) :- reverse( V,VR),
display__ngon( VR ), !.

display__make__she( Cur , V_OLD, V, M ,.GM ) :-

Curl is Cur-1,

mth__tmsfrm( M, V|, VP), !,

mth__trnsfrm( GM , VP, VG), !,

display__make__genrev__quad( V__OLD, VG ),

display__make__she( Curl, VG, VP , M,GM ), !.

/%

REV_OPEN

*/
view__rev__open( Name , Parameters , Indent ) :-
rev__open( Name , Attribute__list , Parameters ,
data( angle(Angle) , rf(Offset,Angles) , Curve) ),
display__name( rev__open, Indent , Name),
parse__attributes( Attribute__list ) ,

Angle__rad is Angle * 0.01745329252,

mth__tmsmat(Offset, Angles,Matrix),
sys__transformation(Sys__matrix),
mth__append__tmsfrm(Matrix,Sys__matrix,New__matrix),
gmtr__curve__to__vertex( Curve , Verticies__2d),
display__make__revopen( Verticies__2d , New__matrix,
Angle__rad ),!.

display__make__revopen( { {X,Y] , [Xvert,Yvert] | Rvert ] ,
Matrix , Angle ) :-
sys__resolution(Res),
Count is Res + 1,
Angle__increment is Angle / Res,
mth__tmsfrm( Matrix , [X,Y,0.0] , Vcenter ),
gmtr__arcverts1(

Yvert, /* The radius */
0.0, /* X center */

0.0, /* Y Center */
0.0, /* Start angle */
Angle__increment ,

Count , /* Count for loop*/
Verts ),

gmtr__verts2d__3d__zyx(Xvert,Verts,Verts1),
mth__tmsfrm( Matrix , Vertsl , V1),
display__make__revopen__start( Vcenter, V1 ),
display__make__revopenl( V1 , Rvert , Matrix ,

Angle__increment , Count )
1

’
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display__make__revopenl( V2 , [[X,Y]], Matrix , __, __ ) :-
mth___tmsfrm( Matrix , [X,Y,0.0] , VI_world ),
display__make__revopen__end( V2 , V1__world ), !.

display__make__revopenl( V1 , [[Xvert,Yvert]|Rvert] , Matrix
, Angle__increment , Count ) :-

gmtr__arcverts1(

Yvert, /* The radius */
0.0, /* X center */
0.0, /* Y Center */
0.0, /* Start angle */
Angle__increment ,

Count , /* Count for loop*/
Verts ),

gmtr__verts2d__3d__zyx(Xvert,Vents,Verts1),
mth__tmsfrm( Matrix , Vertsl , V2 ),
display__make__genrev__quad( V1 , V2 ),
display__make__revopenl( V2 , Rvert , Matrix ,
Angle__increment , Count ), !.

/* Display the triangular end patches
display__make__revopen__end( VS , VC ) :-

sys__show(patch),

display__make__revopen__patchm( VS, VC), !.
display__make__revopen__end( VS , VC) :-

sys__show(vertex),

display__make__revopen__vertexm( VS, VC), !.

display__make__revopen__patchm( [V1,V2|RV] , VC) :-
display__patch([V1,V2,VC)),
display__make__revopen__patchm([V2|RV] , VC ), !.

display.__make__revopen__patchm( {__}, __ ) :- !, trimcore.

display__make__revopen__vertexm( [V1,V2|RV] , VC) :-

display__verticies([V1,V2,VC),O display__make__revopen__vertexm([V2|RV] , VC ), !.
display__make__revopen__vertexm( [__] , __ ) :- !, trimcore.
/* Display the triangular Start patches

display.._make__revopen__start( VC , VS ) :-
sys__show(patch),
display__make__revopen__patch( VC , VS ) , !.

display__make__revopen_start( VC , VS ) :-
sys__show(vertex),
display__make__revopen__vertex( VC , VS ) , !.

display__make__revopen__patch( V__center , [V1,V2|Rv]) :-
display__patch([V__center , V1,V2)),
display__make__revopen__patch( V__center , [V2|Rv] ), !.

display__make__revopen__patch( _ , [__]) :- !.

*/

*/



display__make__revopen_._vertex( V__center , [V1,V2|Rv] ) :-
display__verticies([V__center , V1,V2]),
display__make__revopen__vertex( V__center , [V2|Rv] ), !.

display__make__revopen__vertex( __ , [__] ) :- L.

/*

Misc Definitions

/*
sys__transformation({
(1.0,0.0,0.0,
0.0,1.0,0.0,
0.0,0.0,1.0],

[0.0,0.0,0.0])).

Define the initial transformation matrix

/* 3 x 3 rotation */

/* Offset */

*/
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